
___, -3_ '_

/ j7/z 
_ E- s

 94-2s675
FAS Multigrid Calculations of Three

Dimensional Flow

Using Non.staggered Grids

D. Matovid 1, A. Pollard,

H. A. Becker and E. W. Grandmaison

Centr_ for Advanced Gas Combustion Technologg,

Departments of Mechanical and Chemical Engineering,

Queen's Universitg, Kingston, Ontario KTL 3N6, Canada

Abstract

Grid staggering is a well known remedy for the problem of velocity/

pressure coupling in incompressible flow calculations. Numerous incon-

veniences occur, however, when staggered grids are implemented, partic-

ularly when a general-purpose code, capable of handling irregular three-

dimensional domains, is sought. In several non-staggered grid numerical

procedures proposed in the literature, the velocity/pressure coupling is

achieved by either pressure or velocity (momentum) averaging. This ap-

proach is not convenient for simultaneous (block) solvers that are preferred

when using multigrid methods. A new method is introduced in this pa-

per that is based upon non-staggered grid formulation with a set of virtual

cell face velocities used for pressure/velocity coupling. Instead of pressure

or velocity averaging, a momentum balance at the cell face is used as a
link between the momentum and mass balance constraints. The numeri-

cal stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D) both during

the smoothing and inter-grid transfer, which is a convenient feature when

a block point solver is applied. The results for a lid-driven cavity and a

cube in a lid-driven cavity are presented and compared to staggered grid

calculations using the same multigrid algorithm. The method is shown to

be stable and produce a smooth (wiggle-free) pressure field.
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1 Introduction

Multigrid methods axe used in a number of applications in fluid dynamics,

usually by applying the Full Approximation Scheme [1]. Incompressible flow

calculations usually employ a staggered grid because of its strong coupling

between the pressure and the velocity field (e.g. [2]. For complex geometries,
however, as well _ for calcuIatlonS in non-orthogo-na_coor_nates, the use

of a staggered grid is a serious obstacle to efficient and well structured

computer coding [3]. Additional complexities arise when a block-solver is

used; for example, variables cannot be easily _0uped into cell-bound blocks

due to different node count. Some authors resort to asymmetric nodal

clusters [5] while others update a symmetric block of variables around the

cell centre node thereby updating face velocities twice in each relaxation

sweep [5, 6]. Various levels of decoupled relaxation are also common. These

include distributive relaxation, where all momentum equations are solved

together and the pressure field is solved separately [1, 7], and sequential

schemes that update variables throughout the flow field one by one [8, 9].

Some comparative studies of block versus sequential relaxation give no clear

preference [10, l lj: There is a greater consensus that grid staggering is a

necessary burden, particularly in the context of multigrid methods ([12, 13,

14, 15, 16] and even [1]). Comparison studies of staggered and non-staggered

methods _ are someiimes c0ni_icfing ]n their assessment of the dccuracy and

stability of any given method. While some authors demonstrate that non-

staggered methods match the staggered ones using both criteria ([13, 16,

17]), others question it ([18]): Despite this, the majority of finite volume

incompressibIe calculations use staggered grids, The main reas0nmay be

that ex]stihgnon-stagger_ gri_ increase rath_rTh-an-iessen the::c0mp]exi_y:

of the staggered grid calculations. For example, the method of Rhie and

Chow [19] (adopted by [13, 14, 15]) requires that both the nodal and

cell face velocities are stored. Moreover, in a multigrid context, both the

nodal and the face velocities need to be restrict-ed-_8], requiring even more

computational work. Also, the computational cluster extends beyond either

9 or 27 point stencil in two- or three-dimensional formulations respectively

for the first order discretisation and even more if the higher order methods
are used.

The considerations mentioned above motivated the present contribution:

for a method suitable for block solvers on an irregular three-dimensional

domain using a non-staggered grid.
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In this paper a brief description of the multigrid procedure based on

a new non-staggered method is given in section 2 and the multigrid

implementation in section 3; the test cases and results are presented in

section 4, followed by the discussion section where relative merits of the
method are assessed.

2 The new non-staggered method

A transport equation for a general set of transported variables u in the

volume _2 bounded by a boundary S can be expressed in an integral form

suitable for finite volume formulation

O Ou

where p is the density, u i is the velocity component in the x i direction and

n i is the component of unit normal to the boundary S. When (1) is applied

to the momentum balance of a viscous incompressible fluid, the set u is a

velocity vector u = (uj, j = 1, ..., d) (d being the problem dimension), with

the corresponding diffusion coefficient F --/_ and the source terms

]
-\oxk]j aidS (2)

in the absence of external volume forces. The extension to other trans-

portable properties (such as enthalpy, mass fraction, etc.) is straightforward

by augmenting the vector u to include new variables and defining appropri-

ate source terms and the diffusion coefficients. In the following presentation

a three-dimensional implementation will be used.

The momentum equations are discretised using the hybrid (central/up-

wind) difference scheme [20] although higher order schemes can he

employed 1. The pressure field is resolved by means of mass conservation for

the control volume around the nodein a symmetric block manner as used

by Vanka [5] for the staggered grid, although the extension to the line block

around the node in a symmetric block manner as used by Vanka [5] for

the staggered grid, although the extension to the line block formulation is

1For a multigrid implementation of a second orde* upwind scheme on a staggered grid

see e.g. [21].
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straightforward. The estimation Of the facevelocitiesthat are substituted
into the mass conservationequation is obtained by discretizing the mo-

mentum equation over a half-length voiume around each cell face_ directly

involving t-he nodal pressure and -ve]0cities: Whiie-:t_e_ateral _:veloc_ti_s :_e :

obtained by averaging values from the nearby nodes (see Fig. 1). More

details on the coefficient generation are given in [22]. ........

The principle of discretizing the face velocity using a half-size cell is

applied also by Schneider: and Raw [3], althoughi n their method the

coefficients of the face velocity are treated implicitly by !ncorporating them

into the nodal velocity coefficient matrix. To ensure positive definiteness Of

the nodal velocities coefficient matrix, Schneider and Raw had to truncate

the momentum equation applied to the face velocities [3, 16]. In the

present method, the face velocities are explicitly expressed in terms of

the surrounding nodal values and used in the continuity equation for

the pressure correction calculation. The implication of this step is that

the family of face velocities satisfies both the momentum and the mass

conservation exactly at the positions where the convection velocities in

a general transport equation are required. On the other hand, as an

average of the (tentative) nodal velocities they are readily available without

requirement for apermanent storage. : _ _:=_:
The _boundaries of the flow field are coincident with the cell faces,

enabling the definition o_ a set of boundary nodes there. This practice

ensures consistency between the global mass balance of the whole calculation
domain and the 10cal_mass balance Of each Cell, but Calls for special

treatment if Neumann boundary conditions are to be used. If the zero-

gradient condition for the normal velocity is discretised in a usual way

O(Uini) -- (uini)b -- (uini)inn, (3)

where subscripts b and inn denote boundary and the first inner node,

respectively, the flow rate through the boundary will be linked to the

velocity that does not belong to the mass preserving field, resulting in

poor overall mass conservation. The correct way to implement Neumann

boundary condition in this case is to use the face velocity. This Way, the

local and global mass balance become fully compatible. There is no need

for any special treatment of the Dirichlet boundary conditions where the
face velocities coincide with the boundary and are assumed known.

2O
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3 The multi-grid implementation

In the multigrid context, the nonlinear equation (1) can be expressed as

£(u) = F (4)

by grouping all terms that will result in a coefficient matrix (within a

Newton iteration cycle) into the operator £ and the remainder into the

source term F as in [13, 23]. A more common practice of expressing Eqn. (4)

as homogeneous (by absorbing F into _(u)) [1, 24] is found by the present

authors to be somewhat confusing, especially when defining residual transfer

to the coarse grid.

The discretised (sparse, positive definite) Eqn. 4 for the grid l is linearised

by a Newton iteration [24]

Llu l = F 1 (5)

and relaxed by a block Ganss-Seidel method.

The updates of the variable set

u'----a(diag(L))-lR / (o)

are expressed in terms of the residual R l = F l - Llu l, the inverse of the

coefficient matrix diagonal (diag(L)) -1 and the underrelaxation coefficient

a. Variables at the node i,j, k are then updated by Ui,j, k "-- Ui,j, k "4- uli,j,k •

Restriction is accomplished by grouping a cluster of eight cells into one.

This leads to the following operator

1

¢I,J,K -- _(¢i,j,k + ¢i+l,j,k -4- ¢i,j+l,k -4-¢i,j,k+l.-k

¢i+l,j+l,k -4-¢ij+l,k+l -4-¢i+l,j,k+l + ¢i+l,j+l,k+l), (7)

where I = 2i - 2,... The same operator is applied both to variable and

residual restriction. After both the variables and residuals are transferred

to the next coarser grid (l - 1), Eqn. (5) is approximated as

Ll_l(ul_l ) __--_1-1, (8)

where

_l-1 = FI-1 _ (F/0-1 _ L/-lu_-I)+ 7_I-1Rl (9)
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is the equivalent source term on-the:Coarse grid: _ The _restrictiona_

Neumann boundaries is carried out using a divided form of the boundary

conditions [1]. For the velocity component perpendicular to the boundary,

an additional correction is made to prese_e the mass flow rate through the

boundary.

Prolongation is carried out by tri-linear interpolation using a seven point

stencil, shown here for one cell and with injection only:

¢i,j,k = -_(3¢I,J,K + ¢I'I,J,K + ¢I,J-1,K + ¢I'J,K'I) (10)

with i = (I + 2)/2,... The injection upon the first visit to the fine grid

(FMG cycling is assumed) and the fine grid correction are done as

U/rst = __lUl_ll or U/new ----U/old + _/_l(U/_l -- Uo,/_l). (11)

4 Test cases
[ : L : _:

The non-staggered method presented in this paper is compared with

the staggered three-dlmensionaicalcuiations empIo_ng the block s_metric

Gauss-Seidel algorithm of Vanka [5]. For both methods the coding and data

structures are of the same style,

The flow in a three-dimensional cavity with a moving top is used as a

first test case. The residual norm history is shown in Fig. 2. The rate of

convergence obtained when calculating on a staggered grid is comparable

with the results of Vanka [10] where 12 work units (w.u.) were necessary for

a two orders of magnitude residual reduction. In our calculations 14 w.u.

was necessary for the staggered grid calculation and 18 w.u. for the non-

staggered calculations. 1 However, the change in slope of the non-staggered

residual may indicate that the full potential of multigrid acceleration has

yet to be achieved.

In a second test case, a cube is inserted in a cavity (Fig. 3), forcing the

flow to negotiate this asymmetric thr_dimensional obstacle, partly by the

velocity magnitude change, partly by flow separation. It is believed that

this flow geometry serves as a good test of the pressure/velocity coupling

1Or 23 w.u. for the same residual decrease; however, this is more arbitrary, because

of the much lower initial residual at the finest grid.

==
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because the major force behind the flow adjustment is the pressure field.

The residual history, (Fig. 4) indicates very similar convergence rates for

the staggered and non-staggered calculationsl The resulting flow field in a

symmetry plane (Fig. 5) indicates well resolved separation bubbles around
the cube corners.

5 Discussion and conclusions

The new method of incompressible flow calculation using non-staggered

grids and its multigrid implementation are examined for suitability in a

complex flow field geometry. The presence of two sets of velocity values,

both of which satisfy the (discrete form of the) governing equations increases

the overall level of accuracy for a given grid size, although this remains to
be quantified.

In the numerical experiments performed so far the method proved to be

stable, without any tendency to produce an oscillating pressure field, which

is a common feature of some non-staggered methods [18]. The method

permits discretization on a trivially coarse grid (with a single node in the

interior), which is very convenient in a FAS multigrid implementation,

because it allows the coarse grid to contain the lowest number of nodes.

Thus significantly coarser grids can be used in complex geometries. For

example, in the case of a cube in a cavity (see the previous section) the

coarsest grid (6x6x6 nodes) has only one control volume located between

the cube and the cavity wall at one side. If the calculation method required

two nodes at minimum, the overall node count at the coarse grid would

increase eight times, thereby substantially increasing the work needed to

obtain exact solution at the coarsest grid.

Various tests performed so far always produced smooth solutions both

in velocity and pressure, which indicate a high ellipticity measure of the

proposed method. The analytical evaluation of the ellipticity measure

remains to be carried out (following e.g. [25, 16]).

The amount of computational work of the proposed method is slightly

larger that of the Rhie and Chow [19] method. It is comparable to

the work in the SCGS method of Vanka, requiring the same amount of

work to calculate face velocities and pressure coefficients and, in addition,

the calculation of the nodal velocity coefficients, i.e. approximately 25%
increase in two-dimensional and 14% in three-dimensional calculations. This
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overheadexists only for the simplest fl0w problembecauseany additional
variable that is solvedpermitsnodai velocity coefficientsto be reused_(_th
proper scalingof the diffusion part).
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Figure I: The layout of a non-staggered grid. Only the nodal variables

require storage.

3D Cavity Flow

5 grids: 2x2x2 ... 32x32x32
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Fig_vre 2: Mass residual history for a lid-driven cavity flow. Re = 400.
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Figure 3: The grid for a flow around the cube in a lid-driven cavity.

Flow around the cube in a cavity
4 grids: 6x6x6 ... 48x48x48
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Figure 4:
cavity.
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Moving lid

Figt_r_ 5: Flow around a cube in a lid-driven cavity: particle traces in a
symmetry plane.
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